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In  a hypersonic boundary layer over a wall of variable curvature, the region most 
susceptible to Gortler vortices is the temperature adjustment layer sitting at  the edge 
of the boundary layer. This temperature adjustment layer is also the most dangerous 
site for Rayleigh instability. In this paper, we investigate how the existence of large- 
amplitude Gortler vortices affects the growth rate of Rayleigh instability. The effects 
of wall cooling and gas dissociation on this instability are also studied. We find that 
all these mechanisms increase the growth rate of Rayleigh instability and are 
therefore destabilizing. 

1. Introduction 
Curved surfaces are unavoidable in many engineering designs. The engine inlets 

and the control surfaces of hypersonic vehicles are examples. Peculiar to curved 
surfaces is the Gortler instability mechanism which can be induced by wall 
curvature. In this paper, we continue our systematic studies on the Gortler 
instability mechanism in the hypersonic context. The starting point of our present 
study is the nonlinear theory presented in our previous paper (Fu & Hall 1992). In 
that paper we have shown that when Gortler vortices evolve downstream of the 
neutral position, a large-amplitude vortex structure can be established under the 
combined action of nonlinearity and viscosity. This structure consists of a region of 
vortex activity bounded by two viscous transition layers over which the vortices are 
reduced to zero exponentially. Above the upper transition layer and below the lower 
transition layer there is only the mean flow. The determination of the locations of the 
t w o  transition layers gives rise to a free boundary problem which we have solved for 
diEerent curvature distributions. After such a large-amplitude Gortler vortex 
structure has been established, various travelling waves may be triggered in the form 
of secondary instabilities. Experimental results given by Rwearingen & Blackwelder 
( 1  987) suggest that at least two forms of secondary instabilities may exist. The first 
instability is located at the two transition layers, $T out of phase in the spanwise 
direction with the existing Gortler vortices and thus leads to wavy vortex boundaries. 
The other possible instability is in phase with the existing Gortler vortices and has 
an inviscid nature. Thus it is a Rayleigh instability. In  our previous paper (Fu & Hall 
1992), the wavy type of instability has been fully studied and we have shown that 
a family of neutral travelling wave modes may exist. In the present paper, we shall 
investigate the Rayleigh secondary instability which the large Gortler vortex 
structure may suffer. 

The present secondary instability problem can also be interpreted in the following 
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way. It has been shown in Hall & Fu (1989) and Fu, Hall & Blackaby (1992) that in 
a hypersonic boundary layer over a wall of variable curvature, the region most 
susceptible to Gortler vortices is the temperature adjustment layer sitting a t  the edge 
of the boundary layer. This temperature adjustment layer is also the most dangerous 
site for Rayleigh instability, as has been shown by Cowley & Hall (1990), Smith & 
Brown (1990), and Blackaby, Cowley & Hall (1993). It is therefore of interest to  
investigate how Gortler vortices interact with Rayleigh travelling waves in the 
temperature adjustment layer. Of greater importance is the question of whether the 
existence of Gortler vortices in the boundary layer makes the layer more susceptible 
to a Rayleigh instability. It has been established in Fu & Hall (1992) that as Gijrtler 
vortices develop downstream of the neutrally stable location, nonlinear effects 
produce a mean flow correction as large as the original basic state. Thus at  locations 
O(1) downstream of the neutral position, the original basic state is completely altered 
hy Gortler vortices. Our main concern in this paper is to understand how such 
alterations of the basic state by Gortler vortices affect the growth rate of Rayleigh 
instability. 

The other problems which we consider here are the influences of gas dissociation 
and wall cooling on Rayleigh instability in the temperature adjustment layer. The 
influence of gas dissociation does not seem to have been studied before in the large 
Mach number limit, whilst the influence of wall cooling has previously been examined 
by Blackaby et al. (1993), but their analysis is for unit Prandtl number. Here we shall 
re-examine this problem for Prandtl number equal to 0.72 which is more relevant to 
air. 

This paper is organized as follows. In  the next section, we state our problem and 
give asymptotic solutions for the basic state, whilst in 133 we describe the large- 
amplitude Gijrtler vortex structure and the resulting mean flow. The numerical 
solution of the latter is then discussed in $4, in preparation for the solution of 
Rayleigh equation. Tn 55, we first formulate the Rayleigh instability problem and 
then study the influence of wall cooling and gas dissociation on the Rayleigh modes 
in the absence of Gortler vortices. Finally we investigate the influence of Gortler 
vortices on Rayleigh modes. We discuss our numerical results and then draw some 
conclusions. 

2. The original basic state 
Consider a hypersonic boundary dayer over a rigid wall of variable curvature 

( ~ / A ) K ( x * / L ) ,  where L is a typical streamwise lengthscale and A is a lengthscale 
characterizing the radius of curvature of the wall. We choose a curvilinear coordinate 
system (x*, y*, z*)  with x* measuring distance along the wall, y* perpendicular to the 
wall and z* in the spanwise direction. The corresponding velocity components are 
denoted by (u*,v*,w*) and density, temperature and viscosity by p*, T* and p* 
respectively. The free-stream values of these quantities will be signified by a 
subscript 00. The Reynolds number R,  the curvature parameter d and the Gortler 
number G are defined by 

R = ~ z L p E / f i z ,  A = L / A ,  G = ZRb. (2 .1 )  

We assume that the Reynolds number is large, while A is taken to be small. In the 
context of incompressible flows, the characteristic values of G for instability are 0(1) ; 
whilst in hypersonic flows G is O ( M 2 )  when Chapman’s viscosity law is used (see Hall 
& Fu 1989), and is O(Mt)  when Sutherland’s viscosity law is used (see Fu et al. 1992). 
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In  the following analysis, coordinates (x*, y*, z*) are scaled on (L ,  R-iL, R-iL), the 
velocity (u*, v*, w*) is scaled on (u:, R-~u:, R-hz)  and other quantities such as p*, 
l’*, and ,u* are scaled on their free-stream values with the only exception that the 
pressure p* is scaled on pz u:, and the bulk viscosity is scaled on 1.2. (Such a scaling 
is only appropriate to the Gortler problem and in the Rayleigh problem to  be 
discussed in 85 a different scaling will be used.) All dimensionless quantities will be 
denoted by the same letters without a superscript *. Then the Navier-Stokes and 
energy equations and the equation of state are, to leading order, given by 

yM2p = (1 +cr)pT. (2.7) 

Here terms of relative order R-1 have been neglected and we have used a mixed 
notation in which (q, u,, 03) is identified with (u, w, w) and (xl, x2, x3) with (2, y ,  z ) .  
Repeated suffices psignify summation from 1 to 3. The functions A,  I c ,  c p  and h denote 
in turn the bulk viscosity, the coefficient of heat conduction, the specific heat at 
constant pressure and the enthalpy per unit mass. The constants y ,  M and cr are in 
turn the ratio of specific heats, the Mach number and the Prandtl number defined by 

where % is the gas constant and a, = ( y%TZ) i  is the sound speed in the free stream. 
Finally, the function a in the equation of state (2.7) denotes the percentage by mass 
of the mixture which has been dissociated. (We assume that the gas in an ideal 
diatomic gas, say A,. After dissociation has taken place, each A, molecule dissociates 
into two A atoms and the gas becomes a gas mixture of A, and A.)  In (2.3)-(2.6), the 
operator D/Dt  is the material derivative and it has the usual expression appropriate 
to a rectangular coordinate system. If gas dissociation is neglected, the above 
governing equations can be simplified by putting a = 0, c p  = 1 and (ah/i?p)T = 0. 

The basic state is given by 

(u,  w, w) = (U(x, y ) ,  g(x, y ) ,  O),  T = ~ ( G Y ) ,  P = P(x, y). P = P(x ,  Y). (2.8) 

17 F1.M 247 
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By substituting (2.8) into the governing equations (2.2)-(2.7) it is straightforward to 
obtain the reduced equations satisfied by the basic state. The reader is referred to the 
book by Stewartson (1964) for a detailed discussion of these equations. If we define 
the Howarth-Dorodnitsyn variable and a similarity variable 7 by 

g = l p d y  and r = -  B 
(2X)i ’ 

then the continuity equation is satisfied if and B are written as 

(2.10) 

Here the functionsf(7) and T(r)  must satisfy 

ff” + (ppf“)‘ = 0,  

( l / C )  ( p w , ’  + Ep fP +p(y - l)M2P(f”)2 = 0,  

(2.11) 

(2.12) 

if the x-momentum and energy equations are to be satisfied. These equations must 
then be solved such that f,f’ vanish at the wall, f’, T = 1 at infinity and either 
T‘ = 0 or T specified at the wall. The y-momentum equation gives 

ap/ay = o 
to leading order so that p = p(x). In the following analysis, we assume that there is 
no pressure gradient along the streamwise direction and therefore we can take 
p = constant. Equation (2.7) then gives 

[ l+a(T) ]pT= 1 .  (2.13) 

In the Gortler problem, the pressure perturbation is 0(1/R) relative to the 
unperturbed pressure and therefore the above relation for the basic state can be 
extended to 

[ l + a ( T ) ] p l ’ =  1, (2.14) 

which is valid for the total flow (as long as M 2 / R  is small). 
We now give a summary of the asymptotic solutions of the basic state equations 

(2.11) and (2.12) for an ideal dissociating gas. A detailed derivation of these results 
can be found in Fu et al. (1992). The corresponding results for an ideal undissociated 
gas can be obtained by putting LY = 0 in the following equations. 

An ideal dissociating gas is a diatomic gas which satisfies the following dissociation 
law : 

(2.15) 

(see Lighthill 1957, p. 6 or Becker 1968, p. 36). Here pd and Td are respectively the 
characteristic pressure and temperature for dissociation. On rewriting this relation in 
terms of non-dimensional variables and using the fact that p is a constant, we have 

(2.16) 
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where pd = pd/(%Td) is the characteristic density for dissociation. For the purpose of 
asymptotic analysis, it  is convenient to define two new constants a and b by 

Then (2.16) becomes 

(2.17) 

(2.18) 

which displays the physical fact that dissociation will take place in the hottest region 
where T = O(M2) .  

We assume that after dissociation each component of the gas mixture has its 
viscosity given by Sutherland’s law. We further assume that the viscosity of the gas 
mixture is described by Wilke’s law and the coefficient of heat conduction given by 
Wassiljewa’s formula. It can be shown that in the large Mach number limit, the 
boundary layer splits into two sublayers : a wall layer and a temperature adjustment 
layer. In the wall layer, 7 N M-i, T’ - M 2 ,  f N M-4, so it is appropriate to define O( 1) 
variables Y ,  and F ( Y )  by 

Y = M i y ,  P?iMM-2T, F(Y) =My. (2.19) 

Then (2.11) and (2.12) give 

(2.20) 
h,(a) F” ‘ 

( 1 + m) ( 3) + FF” = 0, 

(2.21) 
l+m(h,(a) P)’ h (a) ( F ) 2  
__ ___ + c p F P + ( y - l ) ( l + m ) ~ T =  0, 

0- l+aFit l + a  Tr 

where (2.22) 

(2.23) def. 2,(1-a) (10.J2JJ7). 
h, = +, 

2a +/I3( 1 -a)  A ,  a + A2( 1 - a )  ’ 

cp = l+ -a+-  I+- a(l-a2). : :( ;J (2.24) 

Here x2,x3 are constants which appear in Wilke’s law and m is the constant 
appearing in Sutherland viscosity law for the undissociated gas. On rewriting (2.18) 
in terms of p, we have 

(2.25) 

Equations (2.20)-(2.25) are to be solved numerically subject to the conditions 

(2.26) 

17-2 

i F ( 0 )  = F(0) = 0, P(w) = 0, P’(c0) = 1, 

p(0) = 0 if the wall is thermally insulated, 

p(0)  = nPW if the wall is under cooling, 

where pw is the wall temperature scaled on M2T, when the wall is thermally insulated 
and n is the wall cooling coefficient. 
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As Y- t  co, P j - 0  and a decays to zero exponentially. From (2.22)-(2.24) we have 
h, -+ 1 ~ h, --f 1 and cP + 1 .  Thus as the edge of the boundary layer is approached, the 
effects of gas dissociation become negligible and (2.20) and (2.21) can then be 
approximated by 

(1  + m) ( F / P i ) ’  +FF” = 0, (2.27) 

(2.28) 

which have asymptotic solutions 

(2.29) 
n 

F = Y - P +  
(Y - P)”/“ 

where both D and P are constants. In  the temperature adjustment layer 7 = 0 ( 1 ) ,  
there is no dissociation and in order to match with (2.29), the solutions for f and 
must expand as 

(2.30) 

T =  P(7/)+ .... (2.31) 

Here Ml is defined by &ll =&l&G. 

On substituting (2.30) and (2.31) into (2.11) and (2.12), we obtain to leading order 

(2.32) 

(2.33) 

These two equations are to be solved numerically subject to the matching conditions 

(2.34) 

and at infinity f ( C 0 )  = 0, P(c0) = 1 .  (2.35) 

It can be shown from (2.32) and (2.33) that 

so that after (2.33) has been solved numerically, the functionfA//(q) can be computed 
easily from this equation. Also, we note that whilst the solution of (2.33) is 
independcpt of the wall-layer solutions and thus of the conditions at  the wall, the 
function f is dependent on the wall-layer solutions through the matching constant D. 
As will be shown later, D is an important constant and it is through this constant that 
the influence of wall cooling and gas dissociation affect the growth rate of Rayleigh 
instability in the temperature adjustment layer. In  table 1,  we show the dependence 
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n = 0.2 n = 0.4 n = 0.6 n = 0.8 n =  1 

ldeal gas 395 313 267 216 186 
Real gas 405 326 271 232 206 

TABLE 1. Dependence of D on gas dissociation and wall cooling 

of D on wall cooling and gas dissociation. In our numerical integration of the 
boundary layer equations (2.20) and (2.21), we have taken = 0.72, m = 0.508, 
y = 1.4, 2, = x, = 1 ,  a = 1.21 x lo9, b = 3.30. As a check, we have also used our 
program to obtain the value of D when v = 1, the wall insulated and gas dissociation 
neglected, for which the exact solution for D is possible and is given by 

3(l+m)’ D =  

Our numerical solution yields D = 17.02, whilst (2.37) gives D = 17.08. 

Y-1 ’ 

(2.37) 

3. The large Gortler vortex structure 
Because of the curvature of the wall, the hypersonic boundary layer described in 

the previous section may lose stability to Gortler vortices. In  the linear Gortler 
instability analysis, we are concerned with the determination of the conditions under 
which Gortler vortices grow in the streamwise direction. To this end, we superimpose 
on the basic state (2.8) a steady periodic stationary vortex structure with 
wavenumber a in the spanwise direction and the perturbation equations are found by 
linearizing the governing equations about the basic state. These linear equations 
have been fully discussed in our previous paper Fu et al. (1992). It was shown there 
that for the wall-layer mode which has wavelength comparable with the boundary- 
layer thickness, the neutral Gortler number is a decreasing function of the local 
wavenumber. As the latter increases, the centre of vortex activity moves towards the 
temperature adjustment layer and the Gortler number tends to a constant which is 
the leading-order term in the Gortler number expansion for the mode trapped in the 
temperature adjustment layer. It is this mode that is most susceptible to Gortler 
vortices since it has a smaller Gortler number than any other mode. 

As is typical of Gortler vortices in growing boundary layers, the evolution of 
Gortler vortices in the temperature adjustment layer is dominated by non-parallel 
eflects. It was shown in Fu et a2. (1992) that  in the hypersonic limit such non-parallel 
effects operate mainly through the O(Ma) curvature of the basic state in the general 
case when the wall curvature is not groportional to 1/(22)%. Thus only when the 
wavenumber a is as large as of order Ms do non-parallel effects become negligible and 
the following asymptotic expression for the neutral Gortler number can be obtained : 

where (3-2) 

and *o = ?;(q*), f!, = T’(q*), po = p ( G ) .  The constant q* denotes the centre of vortex 
activity and has the numerical value of 3.001 when v = 0.72, m = 0.509, whilst x, is 
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the neutral position. In (3.1) the first term is due to the curvature of the basic state 
and other terms are due to viscous effects. It is clear that a = O(M$ is the order at  
which viscous effects become comparable with the effects of centrifugal acceleration 
due to the curvature of the basic state. 

Equation (3.1) is a relation between the neutral Gortler number G, the wavenumber 
a and the neutral position x,. In  theory this relation can be inverted to give an 
expression for x, as a function of G and a. Thus for a given Gortler number and 
wavenumber, we know where the vortices will become neutrally stable. After the 
neutral position has been determined, our next task is to investigate how Gortler 
vortices will grow beyond the neutral position. This task was taken up in the 
nonlinear theory presented in Fu & Hall (1992). It is shown there that initially at the 
neutral position Gortler vortices are trapped in a thin viscous layer of O(&) thickness 
(due to their small-wavelength nature); but as they evolve downstream of the 
neutral position they spread into the temperature adjustment layer and develop into 
a large-amplitude vortex structure. This structure consists of a core region of vortex 
activity bounded by two viscous transition layers where Gortler vortices are forced 
to decay to zero exponentially. The total flow is written as 

1 1 
u = u+-U,  w = v+V, w = W ,  p = p+j j@+P),  T = T+6. (3.3) 

Jfl 

Here (a, V, j~ +F/R, T )  is the mean flow ; whilst (U/M,, V ,  W ,  P, 0 )  is the harmonic part 
of Gortler vortices. The mean velocity components and B have the following 
expressions : 

Here, in analogy with (2.30) and (2.31)) f(x, 7) and T(x, 7) expand as 

(3.5) 

Equations (3.4) are similar to (2.10) except thatfand Tin  (3.4) are also functions of 
x. This is because after the basic state has been reinforced by nonlinear interaction, 
it can no longer be described by the similarity variable 7 alone. Naturally, if v6 is not 
present in (3.4b), we do not expect a and v given by (3.4) to satisfy the continuity 
equation. Thus the function v&x, 7) in (3.4b) is added so that the continuity equation 
could be satisfied. The function I (T )  in (3.4b) is the integration of the mean 
temperature from 0 to 7 (thus the wall-layer temperature is also involved). The 
explicit expressions for it and w, can be found in Fu & Hall (1992). We do not write 
them out here since they are not needed in the following analysis. The similarity 
variable 7 = ~ ( x ,  y) is defined by 

where the function in the integrand is understood to be the composite solution of 
the mean temperature (i.e. the wall-layer temperature and the mean temperature in 
the temperature adjustment layer). In  the following analysis, it is C)f/i?q (not a) that 
will appear. For convenience, we shall refer to it as the mean streamwise velocity 
component although it is only the O(l/Ml) correction term in the expression for a. 



f=&x,7)+&(",7)+-.  ., 
216 = .:(x, 7) + €v;(x,T)) + . . . , 
u = €{E( u; + EU: + . . .) + €E2(Ui + . . .) + . . . + C.C.}, 

v = €-I@( v,l+ EV: + . . .) + €E2( V i  + . . .) + . . . + C.C.}, 

w = {E(w;  + €w: + . . .) + €E2(Wi + . . .) + . . . + C.C.}, 

P = €-1{E(P;+€P;+...)+€E2(P:+. ..)+...+ C.C.}, 

T(x,q)  = qJx,l;r)+Eq(x,T/)+ ..., ' 

6 = ~ { E ( 6 i + ~ 6 : +  ...)+ eE2(6;+ ...)+...+ C.C.), 

Here H ( z )  is defined by 

> (3.7) 

(3.9) 

Vi12' 

(3.10) 

(3.11) 

(3.12) 

and p,, = ~(3) .  The constant N in (3.12) is given by N = M$aw4 and is of O( 1) since we 
have assumed that the wavenumber is of order M:. In our numerical calculations N 
is taken to be unity. 

Equations (3.10) and (3.11) are the 'modified' forms of the basic state equations 
(2.32) and (2.33). The appearance of the fundamental V i  in the forcing terms on the 
right-hand sides reflects the fact that the basic state is now completely altered by 
nonlinear interaction. 

The mean flow temperature q can be first solved from (3.9). We note that as z 
tends to the neutral position x,,, Tn tends to the basic state temperature and (3.9) then 
reduces to the condition for the Gortler vortices to be neutrally stable at  the location 
7 = r*. The fact that (3,9) is now an equation for determining the mean temperature 
z ( x ,  7) shows that the mean flow has to adjust itself so that it is neutrally stable to 
vortices everywhere in the temperature adjustment layer. 

After % has been found, (3.11) can then be solved to determine the fundamental 
V i  (and hence U i  etc. since they are related to V;) .  It is easy to show that the result 
of solving (3.11) is 

(3.13) 
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The two locations where VA vanishes define the centres q,(x) and ~ ~ ( x )  of the two 
transition layers. Finally, the solutions in the core region of vortex activity are 
complete if (3.10) can be solved to give an expression for aL/aq. This has to be done 
numerically and will be discussed in the next section. 

I n  the two transition layers centred at 7 = ql(x),q2(x), the Gortler vortices are 
reduced to zero exponentially and so above the upper transition layer and below the 
lower transition layer, there is only the mean flow. The latter expands as 

f=  fO(.> 7 )  + O ( 4 ,  ?“(x, 7)  = qc., 3) +O(& (3.14) 

where &(x, 7) and G ( x ,  7) satisfy 

(3.15) 

(3.16) 

Here ,Lo = p ( 5 )  and we note that the governing equation (3.16) for q ( x ,  7) is 
decoupled from that for L. We can therefore solve (3.16) on [ O , q l ] ,  [ q 2 ,  co) first 
subject to the appropriate boundary conditions at 7 = 0, 00 and matching conditions 
at  4 = T,, q2 (in order to match with given by (3.9). This gives rise to a free 
boundary problem which has been solved numerically in Fu &, Hall (1992) for several 
curvatures. The reader is referred to that paper for a detailed explanation of the 
numerical procedure which is used to find the locations of ql ,  q2 and the mean 
temperature field in the whole region 0 < 7 < co. 

In the following section, we shall discuss the numerical solutions of (3.10) and 
(3.15) since their solution for& and& were not given in Fu & Hall (1992) and will 
be needed in the solution of the Rayleigh equation in later sections. 

4. Numerical solution for the mean streamwise velocity 
In this section, we shall outline a numerical scheme which we have used to 

integrate the partial differential equations (3.10) and (3.15). We see from these two 
equations that the dependent variables are really df&3q and aL/aq. To simplify 
notation, we shall denote these two functions by fand fl respectively, and drop the 
subscripts ‘0’ on z, z, p0 and @,, in these two equations. Thus our problem is to 
integrate 

on ( O , q l ]  and [qz, co). Here the mean temperature !T’ and p ,  ql and q2 are already 
known from the solution of the free boundary problem discussed in Fu  & Hall (1992). 

The appropriate boundary conditions are 
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(4-4) 

The interval (0, co) is divided into three sub-intervals: 

4 (0, 711, r, (71, T z ) ,  r,: (72, 00). 
Our aim now is to integrate (4.1) in the interval 4 and (4.2) in the intervals 4 and 
r, using a marching procedure in the streamwise direction. At each x, we iterate on 
the values of f l x ,  ql )  and Ax, vZ) so that the matching conditions can be satisfied. 

For the purpose of our numerical calculations, it is necessary to work with fixed 
boundaries so in 4, r2 and & we make the transformations 

T = ? m e 4 ,  T = %+a%-%)> T = 72(4$>  (4 .ti a-c ) 

q : ( - W , o ) ,  T$(O,l), r;:(l,co). (4.6) 

respectively, so that the intervals 4, and 4 now become 

The additional exponential stretching in (4 .5a)  is introduced to accommodate the 
rapid change offnear 7 = 0 (as indicated by (4.3)). 

I n  terms of the new variables 4,  5 and $, the governing equations for the three 
intervals become 

Here 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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Equations (4.7)-(4.9) are parabolic partial differential equations, so their solutions 
can be obtained by a marching procedure. We shall now use the solution of (4.7) as 
an example to illustrate our numerical scheme. If the value of pis  known at x = 2, 
then the following scheme is used to determine this function at Z+d:  

where h is the vertical grid spacing, a superscript ‘n’ signifies evaluation at the new 
position 2 + E” and a subscript signifies evaluation at  the indicated vertical grid point. 
If we replace - co by do and use n mesh points in the 7-direction, we have 

$i = +,+ih, +% = #o+nh = 0. 

Application of (4.11) for i = 1,2, . . . , n - 1 gives a triagonal system of equations which 
can be solved after the following boundary conditions are applied : 

(4.12) 

where the value of Fl is a guess. Then the left derivative of f”  at  7 = yl can be 
calculated by using the formula 

(4.13) 

Similarly, by making a guess forf”(orf) at  7 = 72, say F,, we can solve (4.8) and (4.9) 
and calculate the ‘right’ derivative offat 7 = yl, the ‘left’ derivative offat 7 = 7, 
and the ‘right ’ derivative of f a t  7 = q2. By defining two functions G, and G, : 

we can iterate on Fl and Fa with the aid of the two-dimensional version of the 
Newton-Raphson method until G, and G, become sufficiently small (ensuring that 
the matching conditions (4.4) are satisfied). 

The above procedure shows how to match the values offandfone step forward 
along the streamwise direction at  a given downstream location. The scheme is 
complete if the values offand fare known at a certain initial position x = xo. Such 
values are provided by the weakly nonlinear theory, as we show below. 

For small x-xn, Gortler vortices are described by the weakly nonlinear theory 
given in Fu & Hall (1992). It is found there that the mean streamwise velocityf(i.e. 
a&/aT) in the core region of vortex activity may be written as 

f=P’(r) +duma+. . . , (4.14) 

where f is the same function as that appearing in (2.30), whilst um0 satisfies the 
evolution equation 

(4.15) 
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where the scaled variables (q3,2) are related to ( x , ~ )  by 

(4.16) 

and 
Hall (1992) that ( V,)2 has the following asymptotic solution : 

= p(q*), ,Go = p($), &’ =f”(y*). In the limit x”+ co, i t  is established in Fu  & 

(4.17) 

where 6 = (4a”/b”)t($h/&) (4.18) 

and a“, 6, i are known constants. The function (V,), vanishes at = f C  which, 
through (4.16) and (4.18), gives the locations 7 = T ~ , T ,  of the two transition layers 
in the small x - x, limit. It can then be deduced that the corresponding asymptotic 
solution for umO is of the form 

Umo = &H(()+O(&). (4.19) 

On substituting (4.19) into (4.15) and equating the coefficients of 2;, we obtain 

(4.20) 

where @(C) = H ( f ) ,  5 = (-) x, Po b” 5, A = - ( I  +2E)  6& (AY. (4.21) 
2 x n a 2 q  2x,q 

The homogeneous form of (4.20) has one solution given by H = c+ 6c; another 
solution can be obtained by the method of variation of parameters and can be shown 
to be an even function of 6. However, based on the numerical results given in Hall 
(1982), we expect I?(C) to be an odd of function of 5. Thus the general solution of 
(4.20) is given by 

A(<) = 4 + C , ( Y j + 6 C ) >  (4.22) 

where the constant c1 is determined by matching (4.22) with the solutions in the two 
regions above the upper transition layer and below the lower transition layer. In  the 
region above the upper transition layer, there are no Gortler vortices. The expansion 
(4.19) is retained but now &(c) satisfies 

(4.23) 

The solution which is bounded as 6-t co is 

fi(5) = c,exp (-33 w, C/d2), (4.24) 

where c2 is a disposable constant and Uis a parabolic cylinder function. By matching 
(4.22) with (4.24) a t  6 = C, it is easy to show that c1 and c ,  are given by 
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FIGURE 1. Development of the mean streamwise velocity downstream of the neutral position 
2, = 0.3 over a wall with curvature given by K ( X )  = 2x for x = 0.3, 0.55, 0.8, 1.05, 1.3. 

where gc and c3 can be expressed as 

(4.26) 

Since H(c)  should be an odd function of 5, its solution for - 00 < [ < -C can be 
obtained from (4.24) by replacing 5 by - g and c, by - c z ,  respectively. On collecting 
the above results together, we have 

czexp (-9R UCP, 5/.\/2)> Q G C < w ,  
H ( 5 )  = = 4 + C , ( L ? + + C ) >  -Q 6 Q’ (4.27) i -.ze.P(-B$)u(;, --5/d2), --oo < CG 6. 

On substituting (4.19) back into (4.14) and making use of (4.16)’ we obtain the 
expression 

f= f”l + ( X - X , ) W ( C )  + . . . , (4.28) 

which is valid for x - x, < 1. Evaluating the first two terms on the right-hand side 
of (4.28) a t  some location near x, then gives the appropriate initial conditions for the 
partial differential equations (4.7)-(4.9). 

In  figure 1 ,  we show the evolution of the mean streamwise velocity component 
downstream of the neutral position x, = 0.3 (note that throughout this section the 
term ‘mean streamwise velocity’ is really meant for the O(l/M,)-correction part of 
the mean streamwise velocity, see the paragraph below (3.6)). The numerical 
calculation corresponds to the curvature case K(X) = 2x and to  an insulated wall 
without dissociation. The initial condition is obtained by evaluating (4.28) at 
xo = 0.301. It is clear from the graph that alteration of the basic state by nonlinear 
Gortler vortex interaction mainly takes place in the region of Gortler vortex activity 
and as Gortler vortices develop downstream, they reinforce the basic state by making 
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the mean streamwise velocity grow monotonically. In figure 2, we show the effects 
of wall cooling and gas dissociation on the development of the mean streamwise 
velocity by considering three cases : insulated wall with dissociation neglected (case 
I), insulated wall with dissociation taken into account (case 11), and cooled wall (n 
= 0.6) with dissociation neglected (case 111). The wall curvature and the initial 
condition are the same as in figure 1 .  Initially a t  the neutral position xo = 0.3, the 
amplitude corresponding to case I1 lies between those for cases I and 111 (since the 
values of D have this property and the amplitude is proportional to D). Figure 2 
shows that this property is still preserved after Giirtler vortices have evolved a 
distance of 0.5 downstream of the neutral position. 

5. Rayleigh secondary instability 
After all of the mean flow quantities associated with the large-amplitude Gortler 

vortex structure have been determined, we are now in a position to study the 
Rayleigh secondary instability mentioned in the introduction. I n  order to determine 
whether Rayleigh secondary instability can really be triggered or not, we 
superimpose a Rayleigh travelling wave structure on the existing Gortler vortex 
structure. Thus the total flow is now written as 
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Here the three terms represent in turn the mean flow, the harmonic part of Gortler 
vortices and the Rayleigh travelling wave structure. The small parameter 6 is 
introduced to facilitate linearization and we note that the Rayleigh travelling wave 
is varying at short length and time scales. We assume the wavenumber 12 to be real 
and allow the wave speed c to be complex. The growth rate is then given by kRa times 
the imaginary part of c. 

On substituting (5.1) into the governing equations (2.2)-(2.7) and performing the 
usual linearization with respect to S, we obtain 

where 

a 0  a 0  1 
ay ax p* 

ik(O-c)ii+v"--++- = --ik@, 

- i a5 

- i a@ 
p* aZ 

ik(U-c)v"= ---, 
F* aY 

ik(U-c)iZ = ---, 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

We note from (2.14) that in the temperature adjustment layer where 01 = 0, p* and 
6* satisfy the relation p*8* = 1 .  By using this relation, we can eliminate 4, v", iZ and 
8"in favour of@ in (5.2)-(5.7) and obtain the following single equation for the pressure 
p :  

(5.9) 

When Gortler vortices are absent, this equation reduces to Dhe well-known Rayleigh 
equation (see, for example, Cowley & Hall 1990) 

(5.10) 

In view of (5 .8 ) ,  (3.3)-(3.5), (3.7) and (3.14), the functions 0 and 6* in (5.9) can be 
expressed as 

1 1 0 = 1+--+ ...+-{ €E(Uk+ ...)+... C.C.}, 
MI a7 MI 

0' = !q(Z,T)+ ...+a( o:+ ...)+...+ C.C. 

in the region -ql < 7 < q2, and can be expressed as 

(5.11) 

(5.12) 
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in the regions - co < 7 < yl and r2 < 7 < a. We note that in the latter regions there 
are no Gortler vortices. 

We now look for the following form of solution for (5.9): 

By assuming that the leading-order z-dependent term in the expression for jj to be 
of order 2, we will be able to confine our attention to the discussion of Rayleigh 
instability associated with the generalized inflexion point of the mean flow and 
therefore exclude the possible instability associated with the generalized inflexion 
points in the z-direction due to the presence of Gortler vortices. 

On substituting (5.11)-(5.13) into (5.9), making use of (3.6), and keeping only those 
terms which are of order soMo, we find that Po(x, q )  satisfies 

in the region -ql < y < qz,  and 

(5.14) 

(5.15) 

in the regions - 00 < 7 < and y2 < 7 < co. Here a prime signifies partial 
differentiation with respect to 7. An investigation of the disturbance equations in the 
transition layer shows that these layers are passive and that Po, Po? are therefore 
continuous at  7 = ql, q2.  

In  the remaining part of this section, we shall solve these equations for different 
mean flows to determine the influence of the presence of Gortler vortices, wall cooling 
and gas dissociation on the growth rate of Rayleigh modes. 

5.1. The influence of wall cooling and gas dissociation 
In the absence of Gortler vortices,x andf;; reduce tofl(y), fi andf;;' reduce tofnR(7) 
defined in (2.36), whilst T, and determined by (2.33). Equations (5.14) 
and (5.15) then become 

reduce to 

(5.16) 

This equation has been solved before by Blackaby et al. (1993) for unit Prandtl 
number without taking gas dissociation into account. Here we shall solve this 
equation for Prandtl number CT = 0.72 which is more relevant to air. We shall also 
study how gas dissociation affects the growth rate. 

As we have remarked at  the end of $2, properties in the wall layer affect properties 
in the temperature adjustment layer only through the matching constant D which 
appears in (2.29). Thus gas dissociation and wall cooling affect Rayleigh instability 
simply thrPugh changing the values of D. We note from (2.36) that the functions 
f"/D and f 'ID are independent of wall cooling and gas dissociation. It is easily seen 
from (5.16) that if E0 and Do denote the values of c" and D when the wall is insulated 
and gas dissociation is neglected, then for any other situations the value of c" is given 

c" = (D/Do) 4. (5.17) 
by 
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In  table 1, we have given the numerical values of D when the wall is cooled or gas 
dissociation is taken into account. It is clear that  both gas dissociation and wall 
cooling increase the value of D and thus through (5.17) they increase the growth rate 
of Rayleigh instability. The D values given in table 1 imply that if the wall is cooled 
to one-fifth of its insulated temperature, then the growth rate will be more than 
doubled. Whilst the D values in table 1 imply relatively smaller influence on the 
growth rate by taking gas dissociation into account, we should note, however, that 
those values only correspond to one set of parameters associated with gas dissociation 
(given in the paragraph above (2.37)). In  theory the degree of gas dissociation can be 
‘tuned’ by choosing different values for these parameters in our numerical 
calculation. In  particular, the degree of gas dissociation can be increased by choosing 
a larger value for a and a smaller value for 6 in (2.18). By (2.17), this is effectively 
to  choose a larger value for the Mach number if the gas properties are fixed. Thus gas 
dissociation may have a more significant effect on the growth rate than that implied 
by table 1. 

Equation (5.16) has been solved by using a fourth-order Runge-Kutta method to 
determine the relation between the scaled growth rate (defined as (2x) ik  times the 
imaginary part of c“) and the local wavenumber ( 2 x ) k  The boundary conditions used 
are 

Po--e.xp(S’k$dq) 1 as ~ + 0 ,  and P0-eexp(-(2x)fky) as y + m .  
1131u-1 

(5.18) 

The results from such a numerical integration are shown in figure 3 and on the same 
plot we have also shown Blackaby et al.’s result for CT = 1 (note that their 
wavenumber is (1  + m); times the k and their wave speed is (1 - y )  times the c here). 
Both curves correspond to an insulated wall with gas dissociation neglected. We can 
see that when CT = 0.72 the growth rate attains its maximum value of 2.0735 at  a 
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smaller wavenumber (2z);k = 0.034757 than that for CT = 1. The maximum growth 
rate for CT= 0.72 is roughly four times as large as the maximum growth rate 
corresponding to CT = 1. This is not surprising since the growth rate is proportional 
to D (the proportionality factor being a function o f  CT as well as the wavenumber) ; 
the exact D value for CT = 1 given by (2.37) when the wall is insulated is only 17 when 
m = 0.509, y = 1.4, whilst the corresponding D value for CT = 0.72 is 186. In  figure 
4 ( a )  and 4 ( b ) ,  we show the real and imaginary parts of the pressure for CT = 0.72 for 
a range of wavenumbers. We note that whilst the imaginary part of the pressure 
decays to zero rapidly as 7 + O  or q--f 00, the real part of the pressure decays more 
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FIGURE 5.  Effects of gas dissociation and wall cooling on the growth rate of Rayleigh instability 
when Gortler vortices are absent and CJ = 0.72. -, Insulated wall (ideal gas) ; . . . . ., insulated wall 
(real gas) ; ---, cooled wall (n = 0.4, ideal gas). 

and more slowly towards the edge of the boundary layer as the local wavenumber 
I% (=  (2x)%) decreases. These properties can easily be inferred from the decay 
relations (5.18). 

In order to determine the neutral wavenumber, we first note that the generalized 
inflexion point is located where 

(5.19) 

Obviously, it  is independent of wall cooling or gas dissociation. A simple numerical 
calculation shows that T =  1.958. Then the neutrally stable Rayleigh mode has c“ 
given by 

c” =f’(T) = - 18.56. (5.20) 

The corresponding (2x):lc value is obtained by integrating (5.16) over 0 < 7 < 00 with 
an appropriate treatment a t  the generalized inflexion point. Such a calculation shows 
that the neutral value of (2x)h is 

(2x)h = 0.286. (5.21) 

Finally, in figure 5 we show the effects of gas dissociation and wall cooling on the 
growth rate in the absence of Gortler vortices. The curve for an insulated wall with 
gas dissociation neglected is the same as that appearing in figure 3, whilst the other 
two curves are obtained by using the relation (5.17) and table 1. 

5.2. The influence of Gortler vortices 
As Gortler vortices develop downstream of the neutral position x,, nonlinear 
interactions produce an O( 1) mean flow correction which completely alters the 
original basic state. The leading-order mean streamwise velocity x, f;l and 
temperature z, in the Rayleigh equations (5.14) and (5.15) are calculated for any 
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FIG. 6. For caption see page 524. 

given x by using the numerical procedures outlined in $4 and Fu & Hall (1992), 
respectively. The Rayleigh equations (5.14) and (5.15) are then solved to determine 
the dependence of the growth rate on x (and thus on Gortler vortices). Such results 
for the curvature case K(X) = 2x are shown in figure 6 (a-c), which in turn correspond 
to  an insulated wall with gas dissociation neglected, a cooled wall (n = 0.6) with gas 
dissociation neglected, and an insulated wall with gas dissociation taken into 
account. In each of these figures, x = 0.3 is the neutral position where there is no 
Gortler vortex influence. It is clear that the growth rate is increased by the alteration 
of the basic state by Gortler vortices and as Gortler vortices develop downstream, the 
growth rate increases monotonically, We have also considered walls with curvatures 
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FIGURE 6. Effects of Gortler vortices on the growth rate of Rayleigh instability. (a) The wall is 
insulated with curvature given by K(X) = 2x and gas dissociation is neglected. ( b )  The wall is cooled 
(n = 0.6) with curvature given by K ( X )  = 2x and gas dissociation is neglected. (c) The wall is 
insulated with curvature given by K ( X )  = 22 and gas dissociation is taken into account. x = 0.3, 
0.55, 0.7, 0.85, 1.0 (x = 0.3 is the neutral position). 

given by K(X) = ( 2 ~ ) ;  and ~ ( x )  = (2~): .  For K ( X )  = (2x)3, we obtained similar figures to 
6(u-c), whilst for K(X) = (2x)i, we found that for small x-x,, the growth rate is 
increased by Gortler vortices as the latter evolve downstream, but this increase is 
hardly noticeable graphically ; as Gortler vortices travel further downstream, all 
growth rate curves coalesce into a single curve. This is because K ( X )  = ( 2 ~ ) :  is a special 
curature case in the sense that at large distances downstream of the neutral position, 
a similarity solution exists in which the boundaries of the region of vortex activity 
and the mean flow quantities all become independent of x (and depend only on 7,  see 
Fu & Hall 1992). 

5.3. Conclusions 
In  summary, we have shown in this paper that the presence of Gortler vortices, wall 
cooling and gas dissociation all have a destabilizing effect on Rayleigh modes. 
Although the influence of Gortler vortices is not so pronounced in a small 
neighbourhood of the neutral position as that of wall cooling or gas dissociation, their 
existence in a hypersonic boundary layer can nevertheless make the latter more 
susceptible to Rayleigh modes if they are allowed to travel far enough distances from 
the neutrally stable position. The main effect of Gortler vortices is to increase the 
unstable band of Rayleigh waves, thus the presence of large-amplitude vortices is 
likely to cause the boundary layer to become more receptive to transition induced by 
Rayleigh modes. 

Finally, we conclude with a few remarks concerning the relevance of our 
calculations to experimental observations. Unfortunately there is as yet no 
experimental determination of the effects of Gortler vortices, wall cooling and gas 
dissociation on Rayleigh instabilities. This is of course because of the significant 
experimental difficulties associated with measuring transition in hypersonic flows. 
Indeed i t  is because of these difficulties that  the theoretical work was carried out so 
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that some insight into the role of Rayleigh instabilities in the presence of other effects 
in hypersonic boundary layers might be obtained. However we note that Kendall 
(1975) has performed experiments a t  Mach 4.5 and found results in good agreement 
with the theoretical work on Rayleigh modes. Thus we have some confidence that our 
results will ultimately be confirmed experimentally. 
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